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Abstract
Automatic lipreading has major potential impact for speech

recognition, supplementing and complementing the acoustic
modality. Most attempts at lipreading have been performed on
small vocabulary tasks, due to a shortfall of appropriate audio-
visual datasets. In this work we use the publicly available TCD-
TIMIT database, designed for large vocabulary continuous
audio-visual speech recognition. We compare the viseme recog-
nition performance of the most widely used features for lipread-
ing, Discrete Cosine Transform (DCT) and Active Appearance
Models (AAM), in a traditional Hidden Markov Model (HMM)
framework. We also exploit recent advances in AAM fitting.
We found the DCT to outperform AAM by more than 6% for
a viseme recognition task with 56 speakers. The overall accu-
racy of the DCT is quite low (32-34%). We conclude that a
fundamental rethink of the modelling of visual features may be
needed for this task.
Index Terms: Visual Speech Recognition, DCT, AAM, Large
Vocabulary, TCD-TIMIT

1. Introduction
Lipreading is the process of inferring someone’s speech by an-
alyzing the movement of their lips. Humans use lipreading to
assist their auditory perception in tasks such as speaker localiza-
tion, voice activity detection and ultimately speech recognition
[1]. This skill allows a robust perception of speech in noisy
acoustic environments, or when the hearing abilities have been
partially or completely lost.

An open research problem in this area is finding the right
representation of visual speech. As outlined by previous re-
views [2, 3], most attempts demonstrate an improvement of the
audio-visual fusion over the auditory-only modality, yet these
results are generally valid for restricted tasks given the known
limitations of the used datasets [4]. The main challenges come
from speaker variation, pose variation and adequate exploita-
tion of the temporal correlations [3], in addition to the context
variation that causes co-articulation. Humans also rely heavily
on their language skills when guessing difficult words or long
sentences, so a proper integration of language, video and audio
is required to reach human-level recognition performance.

Active Appearance Models (AAM), introduced in [5]
and streamlined in [6], are state-of-the-art techniques for de-
formable object modeling. The robustness of AAMs has greatly
improved since these early publications via several factors: bet-
ter fitting algorithms [7], feature-based image descriptors [8]
and patch models [9] (portrayed in Figurge 1). These improve-
ments are fairly recent, yet remarkable efforts have been in-
vested to make them available in an open-source project [10].

As the recent AAM developments have been mostly ori-
ented on fitting performance, the recognition performance of the
AAM-based features on lipreading tasks once more becomes
uncharted territory. AAMs have been applied to lipreading

(a) Holistic no-op (b) Holistic SIFT

(c) Patch no-op (d) Patch SIFT

Figure 1: Overview of AAM types by warp and feature used.
The Patch models are evaluating local neighborhoods of the
landmarks instead of the entire appearance. The SIFT descrip-
tors are robust alternatives to raw pixel intensities, where no
additional operation is applied (no-op).

of simple tasks, such as isolated words [11, 12, 13] or small-
vocabulary command sentences [14], while the very few at-
tempts on large-vocabulary speech are performed on the IBM
ViaVoice dataset which is not publicly available [2].

The main contribution of this paper is a direct comparison
between AAM and Discrete Cosine Transform (DCT)-based vi-
sual features on TCD-TIMIT [4], a publicly available audio-
visual dataset aimed at large vocabulary continuous speech
recognition (LVCSR). We also present an automatic procedure
to train AAMs from estimates of pre-trained models, eliminat-
ing the need for manual annotations and making it applicable
on any dataset. To encourage reproducibility, we make our code
publicly available 1.

The rest of the paper is organized as follows. In Section 2
we present the mathematical formulation of our visual feature
processing front-ends. In Section 3 we describe the steps taken
to train AAMs and fit them to the data. Section 4 presents our
experiments, and we draw the conclusions in Section 5.

1http://www.mee.tcd.ie/~sigmedia/Resources/PyVSR



2. Visual features
2.1. DCT

The Discrete Cosine Transform (DCT) represents a standard
choice for visual feature extraction in many lipreading tasks
[2, 3]. Although aimed at compressing the energy of a signal,
it often outperformed algorithms tuned to maximize the classi-
fication accuracy, so it is used here as a baseline method.

To obtain a DCT-based feature in our framework, a re-
gion of interest (ROI) has to be first localized and isolated
from the full-sized image. As the initial work [4] provided
extracted mouth ROIs, we obtained their coordinates through
cross-correlation-based template matching, so we could apply
different post-processing steps. The extracted ROI is converted
to grayscale, then downsampled to 36x36 pixels using cubic in-
terpolation, and finally a 2D DCT transform is applied. The
feature vector is made of the first 44 coefficients (without the
DC coefficient) chosen in a zig-zag pattern and is concatenated
with the first and the second derivatives. The derivatives are
computed using a central finite differences scheme that is fourth
order accurate, and the same order is preserved at the bound-
aries by using forward and backward schemes.

Since we are keeping the feature size constant, there is a
trade-off between the frequency range captured by the selected
DCT coefficients and the granularity of the representation. The
choice for the window size was made experimentally, after try-
ing values of 24, 28, 32, 36 and 40 pixels per side.

2.2. AAM

An AAM is a deformable statistical model of shape and ap-
pearance that learns the variance of an annotated set of train-
ing images. The shape consists of a set of landmarks s =
[x1, y1, ..., xN , yN ] placed on the object to be modeled, which
are a priori aligned using Generalized Procrustes Analysis to
reduce the effect of translation, rotation and scaling. Apply-
ing Principal Component Analysis (PCA) on the set of aligned
training shapes leads to a shape model expressed as:

s = s̄ +

n∑
i=1

pisi = s̄ + Sp (1)

where any shape s is a linear combination of the shape
eigenvectors si with the weights pi also known as shape pa-
rameters, plus the mean shape s̄.

To construct the appearance model, the pixels within the
training shapes are first warped to their corresponding locations
in a common reference shape (typically the mean shape s̄) us-
ing techniques such as piecewise affine warping or thin plate
splines. PCA is applied again on the serialized warped image,
such that any appearance A(x) could be expressed as a mean
appearance Ā(x) plus a linear combination of the appearance
eigenvectors Ai(x):

A(x) = Ā(x) +

m∑
i=1

ciAi(x) = Ā(x) + Ac (2)

where the weights ci denote the appearance parameters.
Since the number of parameters is as large as the number of

landmarks and the number of pixels respectively, a trade-off can
be made between the representation power of the models and
the size of the parameter vectors by analyzing the cumulative
ratio of the corresponding eigenvalues.
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Figure 2: OpenFace landmark confidence on TCD-TIMIT

For unlabeled images, when a good initialization of the
shape can be provided (e.g. the mean shape aligned on a face
localized using a face detector), several fitting algorithms can
be applied to iteratively update the parameters that minimize
an error between the given image and the model instance. In
[7], such algorithms are classified with respect to the cost func-
tion, type of composition and optimization method. The param-
eters obtained at the last iteration constitute the foundation of
the AAM-based visual features.

3. Methodology
3.1. Dataset

We have used the TCD-TIMIT dataset [4] for our experiments.
The sentences of TCD-TIMIT are designed for good cover-
age of phoneme pairs in English, implicitly providing realistic
viseme contexts, thus well suited for a large vocabulary lipread-
ing task.

To make our results comparable to [4], we used an identical
setup for the speaker-dependent scenario. Hence, we worked
on the subset of 56 speakers with Irish accents, each speaker
contributing with 67 sentences for training and 31 sentences for
testing. For labels, we reuse the transcription file made of se-
quences of 12 viseme classes, as it was based on the top per-
forming phoneme-to-viseme mapping in the work of [15].

3.2. AAM training

An annotated set of images is required to train AAMs. Previ-
ously, this has been a time-consuming step for most datasets.
In [14] and [16], a few frames per speaker are manually anno-
tated, then person-specific AAMs are trained and fitted on the
remaining frames. In addition, the final parameters are obtained
by projecting the shapes and appearances onto the PCA sub-
space, which would roughly be equivalent to a Sum of Squared
Differences (SSD) formulation of the cost function.

To eliminate the need for manual labor, we propose an au-
tomatic procedure to train our models. The open-source tool
OpenFace [17] was used to get 68 facial landmark estimates
for each frame, storing at the same time their confidence scores
as returned by the tool. We then analyzed the cumulative dis-
tribution of these confidence scores on our dataset, shown in
Fig. 2. This reveals an overall high confidence, which means
that most frames have reliable labels. From a visual inspection
we observed that most landmarks above a confidence score of
0.9 were very accurate, with the exception of the lips region.



Training generative models such as AAMs with a massive
amount of similar data, such as consecutive video frames, leads
to poor performance in practice, so we apply a sampling strat-
egy. Taking the faces that get detected successfully and that
have a high confidence score, we sort them by the amount of
lip opening (distance between the upper and lower lips). We
then sample between 3 to 6% of the sorted frames at evenly
spaced intervals. For TCD-TIMIT we decided to use a confi-
dence threshold of 0.94 to train our models, which kept 90% of
the frames. In addition, we randomly selected only 5 training
sentences per speaker from the available of 67, further reducing
the training data size to a total of around 1100 frames. The ref-
erence shape of the AAM was chosen as the mean shape from
the first video in the dataset. We will refer to these models as
global, since they use training data from each volunteer. The
models built from the training samples of a single person will
be coined person-specific.

All the previous attempts at lipreading with AAMs have
used the original formulation where the entire appearance tex-
ture within the landmark area was modeled. It has been shown
that learning only small patches around the landmarks leads to
robust models that outperform the state-of-the-art at fitting to
unseen faces [9]. We considered both approaches, coined Holis-
tic and Patch AAMs in [10] (and illustrated in Fig.1), in order
to compare their fitting and classification performance. In ad-
dition to the traditional pixel intensities for appearance features
(denoted in this work and in [10] as no-op), we also considered
SIFT [18] image features, which were shown to largely out-
perform popular alternatives at fitting to unconstrained images,
requiring at the same time fewer appearance components [8].

Modeling only a part of the face can be beneficial for
lipreading [19, 13], since the PCA energy would better describe
the subtle movements. Yet, as the area being modeled gets
smaller, is it expected to see an increase in fitting error. We built
two additional models, one for the lips area only, and another
for the whole chin and mouth area (further denoted as chin), the
latter being chosen as a trade-off between relevancy to lipread-
ing and fitting performance. The face and the chin models use
a pyramid of three resolution levels (25%, 50%, 100%), while
the lip models only use the last two.

Other important parameters for our models were the image
rescaling to a diagonal of ≈ 150 pixels at full scale, 40 and 150
shape and appearance components respectively, and patch sizes
of 17x17 pixels around landmarks for the Patch models.

Table 1 shows how well our models were able to represent
the appearance of the training data. High values of the kept
variance imply that model is able to reconstruct accurately any
given face, provided that the optimization algorithm finds the
right parameters. More variance was kept using pixel inten-
sities than SIFT features, as the color images have only three
channels while SIFT has eight, thus more data is being mod-
eled. The variance kept by the shape eigenvectors was close
to 100% using 40 components, suggesting that there are strong
correlations between the landmark locations.

3.3. AAM feature selection

The AAM fitting process consists in the optimization of a cost
function (typically the error between a given image and the
AAM reconstruction) with respect to the shape and appearance
parameters, provided that a good initialization is available. The
shape was initialized using the dlib face detector implemented
in menpo [10] by aligning the mean shape with the face bound-
ing box. The Wiberg Inverse Compositional (WIC) algorithm

Table 1: Percentage of kept variance for the appearance models
using 150 appearance components

Model→
↓ Part

Holistic Patch Scaleno-op SIFT no-op SIFT

face
96.6 78.7 83.1 63.0 25%
96.8 79.2 87.6 71.1 50%
93.2 76.9 82.8 74.7 100%

chin
97.9 75.9 82.8 56.4 25%
97.1 73.4 87.4 65.0 50%
93.6 70.1 83.9 69.6 100%

lips 95.4 72.2 89.2 61.6 50%
91.6 68.5 90.9 65.9 100%

was chosen for the optimization problem, as it was shown to
be an efficient alternative to state of the art algorithms [7]. We
ran 10 iterations of WIC for the first two resolution scales and 5
more for the full resolution model, with an important exception
of the Holistic no-op model that needed 20 iterations at the low-
est scale in order to converge more often. For the chin and lips
models, the shapes were initialized from a subset of the final
face shape, iterating 10 more times per resolution scale to make
room for corrections.

We considered the shape and the appearance parameters af-
ter the last iteration as feature vectors, either taken separately or
concatenated, and we also considered the first derivative of the
appearance alone or the concatenation. Among these five fea-
tures, the highest performance was achieved by the latter, which
was our default choice in the subsequent experiments. The first
four shape parameters were discarded, as they represented the
global similarity transform used for normalization.

It is worth mentioning that fitting is a slow process, taking
almost one day to process the files of a single speaker using the
four face models alone in menpo. We ran the fitting process
on a HPC cluster made of 16 nodes and 40 cores, achieving a
theoretical speedup factor of 160.

3.4. Viseme recognition

Our monoviseme recognizer was implemented in HTK 3.5 [20],
following the procedure described in [4] as close as possible.
For each of the 12 viseme classes we have built 3-state left-
to-right Hidden Markov Models (HMMs) with mixtures of 20
diagonal covariance Gaussian densities per state, initialized in
flat start mode with HCompV. Additionally, for the silence state
viseme we have added backward and skip transitions. Finally,
we have applied 5 runs of embedded training using HERest for
every increment of the mixture components.

The reported correctness and accuracy results are computed
using HResult between the ground-truth transcriptions provided
with TCD-TIMIT and the predicted ones.

No language model was used. This allows a comparison of
the raw lipreading ability of the feature sets.

4. Experiments
4.1. Fitting performance

The overall system performance relies first on the accuracy of
landmark localization on unseen faces. In this experiment we
compare the performance of our face AAMs in terms of face-
normalized point-to-point Euclidean error between the WIC fit-
ter prediction and the ground-truth shapes.
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Figure 3: AAM fitting convergence using global face models
(trained on the full set of volunteers)

Figure 4: AAM fitting convergence using a person-specific
model for volunteer 03F

Although the ground-truth labels are not perfect, having a
high confidence rate as in Figure 2 leaves little room for noise.
We obtained almost identical results when considered the fitting
performance only on the frames above 0.94 confidence.

Figure 3 shows the proportion of frames fitted with an error
lower than a certain value, using the global face models, while
Figures 4-5 show the same information using person-specific
AAMs of two volunteers. The two speakers modeled individ-
ually were drawn from the top/bottom 10 performers in [4],
where volunteer 03F was considered easier to lipread than 34M,
which had a full beard and moustache.

The Holistic models were outperformed by the Patch mod-
els in almost all cases, with the exception of volunteer 03F
where Holistic SIFT managed to match them, although for vol-
unteer 34M it couldn’t cope well with the facial hair. Both Patch
models achieved a convergence rate above 95% for an error of
0.02 and were almost indistinguishable in performance, demon-
strating their robustness not only for fitting to unseen frames,
but also when trained from less perfect landmarks.

In most cases, AAMs were able to improve the pre-trained
OpenFace estimates where the confidence score was low. One
such example is shown in Figure 6, where the eyes and the
eyebrows landmarks were corrected for volunteer 05F wearing
glasses with the eyebrows not visible. This leads to a better
parametrization of the fitter for faces that are otherwise more
challenging to landmark.

Figure 5: AAM fitting convergence using a person-specific
model for volunteer 34M

Final

Groundtruth

Figure 6: Landmark correction for volunteer 05F wearing
glasses and with the eyebrows occluded

4.2. Recognition performance

We now focus on the recognition results obtained by training
HMMs in a speaker-dependent scenario, thus using 67 training
sentences from each volunteer and testing on their remaining 31
unseen sentences. The predicted viseme sequence is computed
using the HTK tool HVite.

In Figure 7 we plot the correctness and accuracy scores
returned by HResults for an increasing number of volunteers
added to the system (ordered by their alphanumeric IDs). The
accuracy on the entire set of volunteers (31.59%) is 3% below
the one obtained in [4]. An increase of 1-2% was possible when
we interpolated the features to double the rate and used 4-state
HMMs, but we reverted to the original settings to have a fair
comparison with the AAM features.

In Figure 8 we show the accuracy obtained using AAM-
based features and an identical HMM recognition framework.
As anticipated, the Holistic no-op model has the lowest accu-
racy, since less than 60% frames converged on average. The
other three models perform similarly, yet reaching an accuracy
of ≈ 25% on the entire set, significantly lower than DCT.

We repeated the experiment with features extracted using
the two part models, chin and lips, on a subset of the first 33
volunteers, following the process described in Section 3.3. The
results are displayed in Figure 9, showing the chin model to
perform only marginally better, although the decreasing trend
remains. This small increase comes with the cost of doubling
the processing time, as it requires a cascade of two fittings.
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0 10 20 30 40 50
number of volunteers

20

25

30

35

40

45

p
e
rc

e
n
ta

g
e

AAM Accuracy on test set

Holistic no-op

Holistic SIFT

Patch no-op

Patch SIFT

Figure 8: Accuracy scores for AAM features

4.3. Speaker-specific models

In order to see how much the quality of the AAM impacts
the viseme recognition accuracy, we tested the case of person-
specific AAMs for the two volunteers described in Section 4.1.
If there was a problem with the global model, we should no-
tice a significant increase in accuracy when switching to person-
specific models. Table 2 shows the viseme recognition results
obtained with both specific and global models for these two
speakers, along with the DCT baseline. We could not find a sig-
nificant advantage of the person-specific models, hence at this
stage it would not be useful to attempt adapting a global AAM
to particular faces in order to gain a performance boost.

5. Discussion
In this paper we have explored the performance of hand-crafted
visual features for a LVCSR lipreading task in a traditional
HMM framework. We first computed DCT-based features for
a baseline, reaching a similar result as in [4]. Then we trained
several AAMs using an automatic procedure and fitted them to
each video frame to obtain the AAM-based features.

A first finding is that AAM features do not outperform the
DCT ones in an identical recognition framework. This has been
reported before on IBM ViaVoice [2]. This dataset has 290 sub-
jects and over 50 hours of speech. However their approach was
to rescore audio-only lattices with visual unit HMMs. Their
scenario therefore bypassed the issue of using visual features
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Figure 9: Performance of the chin and lips models

Table 2: Recognition performance for person-specific models
versus the global models. Since there was less data available
for individual speakers, the highest values were obtained on av-
erage with 14 Gaussian mixture densities

Speaker→
↓ Part

03F 34M
Corr Acc Corr Acc
Specific AAM

face 51.84 42.62 51.63 43.24
chin 52.62 45.24 53.11 40.18
lips 50.87 43.98 52.62 43.14

Global AAM
face 53.11 44.66 51.04 41.76
chin 53.88 43.50 51.53 41.95
lips 52.43 44.27 53.70 42.15

DCT 54.66 46.80 47.88 39.68

to find the viseme boundaries. On the other hand, the study of
[14] found AAM better than DCT on a lipreading task with a
small vocabulary of 51 words, where word-level HMMs were
used. Later work from the same authors in [21] reported results
on a corpus of 12 speakers, each speaking 200 sentences from
a vocabulary totalling 1000 words. Again AAM outperformed
DCT, but the approach made use of Linear Discriminant Analy-
sis requiring frame-aligned viseme labels, while the facial land-
marks were obtained semi-automatically from person-specific
trackers. Another study [11] used speaker-specific normaliza-
tion that makes the results less comparable. This is the most
comprehensive comparison between DCT and state-of-the-art
AAM that we are aware of.

The reported results are obtained using a visual speech
model only, allowing raw performance comparison of the ex-
tracted features. Adding a simple bigram language model im-
proves the viseme recognition accuracy by up to 10% for the
AAM features, and 3% for DCT, narrowing the performance
gap to less than 1%.

Both AAM and DCT perform a basis decomposition of the
image, although the first considers the eigenvectors specific to a
training set of images, while the latter uses a fixed frequency de-
composition. Since both transforms are not optimized for clas-
sification, e.g. maximizing the separability between classes, this
suggests that the raw parameters are not necessarily ideal fea-
tures, requiring further processing to find person-independent



cues. This is reinforced by the fact that Patch AAMs obtained a
high convergence rate at fitting to unseen images, so the param-
eters should contain meaningful information.

Modeling a subset of the face has only shown minor im-
provements of the recognition accuracy. The chin model seems
to have a slightly better advantage versus the lips one, and this
could be explained by two factors. The extra iterations of the
part model ensured a more accurate fitting where there were
more control points available. Also, the chin area contains ad-
ditional visemic information, as speech articulators are not lim-
ited to the lips region.

In this context, we could also question the suitability of
HMMs for LVCSR lipreading. We plan to reproduce our ex-
periments on simpler datasets such as GRID [22], CUAVE [23],
and also on OuluVS2 [24] which is similar to TCD-TIMIT. A
thorough analysis of the HMM suitability would require debug-
ging down to the Baum-Welch and Viterbi algorithms to under-
stand the fail cases. Another informative experiment would be
to replace the HMM framework for pattern recognition with a
Long short-term Memory (LSTM) one, while reusing exactly
the same features, as it could reveal a bottleneck at the recogni-
tion level and not the feature one.

An important conclusion about AAMs is that the Patch
models, especially when combined with SIFT image descrip-
tors, are able to achieve a much higher fitting and implicitly
recognition accuracy than the traditional Holistic ones that have
been used so far in lipreading. As shown in [9], their robustness
is conspicuous when trained on unconstrained in-the-wild faces,
making them more suitable candidates for realistic lipreading
scenarios.
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