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Abstract
This paper investigates a lipreading scheme employing optical
and depth modalities, with using deep bottleneck features. Op-
tical and depth data are captured by Microsoft Kinect v2, fol-
lowed by computing an appearance-based feature set in each
modality. A basic feature set is then converted into a deep bot-
tleneck feature using a deep neural network having a bottleneck
layer. Multi-stream hidden Marcov models are used for recog-
nition. We evaluated the method using our connected-digit cor-
pus, comparing to our previous method. It is finally found that
we could improve lipreading performance by employing deep
bottleneck features.
Index Terms: lipreading, deep bottleneck feature, depth infor-
mation, multi-stream HMM.

1. Introduction
Lipreading is a technique to recognize visual-only speech activ-
ities [1, 2, 3]. In conventional methods, at first some preprocess-
ing methods such as face detection were conducted followed by
extracting visual features from an image sequence. Lipreading
was then performed using some image and speech recognition
technology, for instance using a Hidden Markov Model (HMM)
that has been employed in many speech recognizers. Recently,
lipreading approaches adopting Deep Neural Network (DNN)
techniques have attracted many researchers. For example, an
end-to-end lipreading method employing long short-term mem-
ory architectures was proposed, achieving high accuracy [3].

We have already investigated a lipreading method using op-
tical and depth data [4], like [5]. In our previous work, we firstly
extracted optical and depth features applying Principal Com-
ponent Analysis (PCA) referring to [6]. Multi-stream HMMs
were employed to balance optical and depth streams, like con-
ventional Audio-Visual Speech Recognition (AVSR). In terms
of AVSR, we have also developed a recognizer utilizing Deep
Bottle-Neck Feature (DBNF) technology [7]. Mel-Frequency
Cepstral Coefficient (MFCC) features were extracted from the
audio modality. For each frame in the visual stream, an
appearance-based feature set was obtained including PCA, Dis-
crete Cosine Transform (DCT), Linear Discriminant Analysis
(LDA), and our original feature Genetic-algorithm-based Infor-
mative Feature (GIF) [8]. One shape-based feature set was also
added to the feature set. Then we applied a DNN to the au-
dio and visual features respectively, to obtain DBNFs. Audio
DBNF and Visual DBNF were subsequently concatenated, fol-
lowed by performing AVSR with multi-stream HMMs.

In this paper, we improve our lipreading method using opti-
cal and depth information, by choosing the DBNF technique. In
each modality, DBNFs are computed as we did for our AVSR,
excluding the shape information. Both DBNFs are combined
frame by frame to obtain visual features. Optical and depth
HMMs are also merged as multi-stream HMMs for lipreading.
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Figure 1: Our lipreading method.
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Figure 2: Sample images in optical and depth modalities.



Table 1: Experimental setup of DNN.
Input Hidden Bottleneck Hidden Output

(1) (2,3,4) (5) (6) (7)
Layer size 1,551 2,048 40 2,048 179

Pre-training Fine-tuning
Epochs 10 50
Minibatch size 256 256
Learning ratio 0.00004 0.00006
Momentum 0.9 0.0

2. Lipreading
2.1. Recording and basic feature extraction

Figure 1 illustrates a flow of our lipreading scheme. We chose
Microsoft Kinect v2 as a recoding device, capturing RGB and
depth face data shown in Figure 2. Mouth detection is applied
to optical images using Haar-like features. After cropping im-
ages, converting into monochrome images and reducing the res-
olution, we obtain optical and depth mouth images. Note that
speech signals are also recorded simultaneously for model train-
ing. For more details about data acquisition, please refer to [4].

In the optical modality, four kinds of appearance-based fea-
tures (PCA, DCT, LDA, GIF) are extracted from an image [7].
After calculating ∆ and ∆∆ coefficients as well as upsampling,
a 141-dimensional optical feature set is obtained. Similarly, a
depth feature set is computed from a depth image.

2.2. Training

Training DNNs and HMMs is the same as [7]. MFCCs are
calculated from speech signals, subsequently audio HMMs are
generated. Forced alignment is applied to get HMM state align-
ment, that is converted into a vector sequence for DNN training.

For the optical modality, a seven-layer full-connected DNN
having a bottleneck layer is built; its input layer corresponds
to the basic feature set, while the output layer corresponds to
an HMM state vector. In this case, the input vector consists of
previous, current and following frames. The DNN is then used
for feature extraction from the basic feature set; output values of
the bottleneck layer are composed into an optical feature vector,
Deep Bottleneck Optical Feature (DBOF). Using DBOFs in a
training set, optical HMMs are consequently trained.

For the depth modality, a sequence of Deep Bottleneck
Depth Feature (DBDF) is obtained as well. Depth HMMs are
finally made from DBDFs in the training data set.

2.3. Recognition

Before recognition, both optical and depth HMMs which are
obtained in the above model training are combined into multi-
stream HMMs. DBOF and DBDF vectors for test data are con-
catenated frame by frame. Lipreading is then conducted us-
ing the multi-stream HMMs and concatenated DBNFs. Similar
to AVSR, we must properly set a stream weight (0 ≤ λ ≤ 1)
for each modality, to balance contribution of optical and depth
modalities. Note that we manually optimize balancing parame-
ters in this paper, because we simply want to compare discrim-
inative ability of conventional and proposing features.

3. Experiment
3.1. Database and experimental setup

In order to evaluate effectiveness and usefulness of our new
lipreading scheme, we conducted lipreading experiments. A
database used in this work was the same as [4]. We recorded

Table 2: Lipreading accuracy [%] using conventional and pro-
posed methods.

Spkr Conv. Prop. Spkr Conv. Prop.
ID (PCA) (DBNF) ID (PCA) (DBNF)
A 23.32 35.57 F 20.95 40.71
B 18.58 35.97 G 23.23 38.98
C 18.65 36.90 H 35.57 60.08
D 33.20 42.29 I 25.69 44.66
E 22.92 26.88 J 22.05 45.28

Ave. 24.42 40.73

speech signals and visual data including optical and depth im-
ages from 10 subjects (A–J), in acoustically and visually clean
condition. Similar to an audio-visual corpus CENSREC-1-AV
[9], in our database each speaker uttered 77 connected digits.

We conducted recognition experiments in a leave-one-out
manner; for a test set including only one speaker’s data, we
used optical and depth data from the other nine speakers when
training models. The DNN setup are shown in Table 1, and the
other setup should be referred to [4, 7].

3.2. Result and discussion

Table 2 shows recognition accuracy, considering deletion, sub-
stitution, and insertion errors. Stream weight factors were man-
ually set for each speaker, so that the highest accuracy could be
obtained. From Table 2, it is obviously found that the proposed
scheme utilizing DBNFs achieved better performance for all the
subjects compared to the conventional one adopting PCA only.

The difference between the previous and proposed methods
is adding several basic features (DCT, LDA and GIF), and ap-
plying the DBNF technology. We also did an additional experi-
ment using PCA, DCT, LDA and GIF, but not applying DBNF.
It is then found that there is not enough difference compared to
the method only choosing PCA. That means the improvement
in this work mainly comes from the DBNF architecture.

Since the optimal stream weight for each speaker is quite
different, automatic stream weight optimization is expected. We
will also try to collect much more data in near future.
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