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Abstract
Automatic speechreading systems have increasingly exploited
deep learning advances, resulting in dramatic gains over
traditional methods. State-of-the-art systems typically employ
convolutional neural networks (CNNs), operating on a video
region-of-interest (ROI) that contains the speaker’s mouth.
However, little or no attention has been paid to the effects
of ROI physical coverage and resolution on the resulting
recognition performance within the deep learning framework.
In this paper, we investigate such choices for a visual-only
speech recognition system based on CNNs and long short-term
memory models that we present in detail. Further, we employ a
separate CNN to perform face detection and facial landmark lo-
calization, driving ROI extraction. We conduct experiments on
a multi-speaker corpus of connected digits utterances, recorded
in ideal visual conditions. Our results show that ROI design
affects automatic speechreading performance significantly: the
best visual-only word error rate (5.07%) corresponds to a ROI
that contains a large part of the lower face, in addition to just
the mouth, and at a relatively high resolution. Noticeably, the
result represents a 27% relative error reduction compared to
employing the entire lower face as the ROI.

Index Terms: lipreading, speechreading, visual speech recog-
nition, region-of-interest, CNN, LSTM, deep learning.

1. Introduction
Lately, there has been renewed research interest in automatic
speechreading (or lipreading) systems, harvesting recent ad-
vances in the computer vision and automatic speech recogni-
tion (ASR) fields, driven by rapid progress in deep learning [1].
Such systems exploit visual speech information, extracting it
from video of the speaker’s face, and employ it, often fusing
it with the audio stream, for ASR. The technology promises
to facilitate robust human-computer interface development and
processing of vast video data archives, among others [2, 3].

Visual feature extraction is a crucial component of speech-
reading systems, while also shared by a number of related
audio-visual processing tasks [3, 4]. Appearance-based meth-
ods have dominated its design, employing appropriate repre-
sentations of the video data within a region-of-interest (ROI),
containing the speaker’s mouth, and extracted following face
detection and facial landmark localization [3, 5]. Tradition-
ally, hand-crafted features have been used for this purpose,
mostly based on PCA, image transforms such as DCT, wavelets,
and scattering [6], or image descriptors like LBPs [7] and
HOGs [8]. Although such features have recently been em-
ployed in conjunction with deep learning methods for visual

G. Potamianos wishes to acknowledge support for this work by the
EU Horizon 2020 project BabyRobot, under grant 687831.

speech modeling [9–11], it is the use of convolutional neural
networks (CNNs) that has dominated over the past couple of
years, yielding state-of-the-art speechreading systems [12–16].
In this approach, the entire ROI constitutes the CNN input layer,
and a hierarchy of layers of numerous convolution filters to-
gether with other appropriate operations are learned, removing
the need for hand-crafted feature design. Furthermore, mo-
tivated by recent progress in ASR [17–19], CNNs have been
primarily incorporated into speechreading systems in conjunc-
tion with long short-term memory (LSTM) models [20] and
their variants [21], in order to achieve temporal speech mod-
eling [8, 15, 16, 22–25]. Most such works implement so-called
“end-to-end” systems, based on connectionist temporal classifi-
cation (CTC) [26] or sequence-to-sequence learning [27], suc-
cessfully addressing data sequence labeling.

As the aforementioned works operate on the ROI raw data,
it is reasonable to expect that ROI extraction, including its phys-
ical coverage and resolution may affect system performance.
This has certainly been demonstrated within the traditional
speech modeling paradigm in our earlier work [28, 29]. How-
ever, little attention has been paid in the literature to this issue
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Figure 1: A schematic of the regression CNN employed for face
detection and facial landmark localization in Section 2.1 (see
also Table 1).

(a) (b)

Figure 2: (a) The 18 points predicted by the regression CNN
(marked in blue). The corresponding face and mouth bounding
boxes are drawn in red. (b) Face and mouth detection results on
a frame of the dataset of Section 4.1 (shown in red), compared
to ground truth annotations (shown in blue). Additionally, 12
localized landmarks are depicted.



CROP AREA

90x90 60x60 48x48

DOWNSAMPLE & CROP

+40px

+80px

+120px

LOWER
HALF FACE

+0px

Figure 3: The ROI extraction process following face and mouth detection, depicted on an example dataset frame. Most of the ROIs
considered in our experiments are also shown, differing in resolution and physical coverage of the lower face around the mouth.

within the CNN-LSTM framework adopted by recent state-of-
the-art speechreading systems. In this paper, we investigate the
problem based on our CNN-LSTM system that we also present
in detail. The system also employs a separate CNN to perform
very accurate face detection and facial landmark localization,
driving ROI extraction. Reported experiments are conducted on
an in-house multi-speaker corpus of connected digits utterances,
recorded in ideal visual conditions [30].

The remainder of the paper is structured as follows: Sec-
tion 2 discusses the ROI extraction process; Section 3 the CNN-
LSTM system and decoding framework; Section 4 the data and
experimental results; and Section 5 our conclusions.

2. Face detection and ROI extraction
2.1. CNN based face detection and landmark localization

The first step in our visual-only ASR pipeline is, given a video
frame, to localize 16 facial landmarks and another two for face
bounding box detection. For this purpose, we train a regression
CNN of four convolutional and three fully connected layers, us-
ing Adagrad optimization [31] and the smooth L1 loss func-
tion [32], based on annotated images (see Section 4.1). The
CNN architecture is schematically depicted in Figure 1 and fur-
ther detailed in Table 1. The input to the network is a grayscale
image, where we rescale each pixel intensity from [0,255] to
the [0,1] range and apply zero mean and unity variance normal-
ization [33]. Notice that the database frames have a 704×480-
pixel resolution, and are converted to 224×224 pixels before
fed into the CNN. Specifically, we crop the frames to 672×448
pixels (removing image boundary pixels) and then downsam-
ple them by 3×2 along the x- and y-axes, obtaining 224×224-
pixel frames. Figure 2 depicts the 16 + 2 points that the CNN is
trained to detect, together with a detection example.

2.2. Landmark post-processing and ROI extraction

The CNN predictions (obtained independently at each frame)
are temporally smoothed using median filtering over a 15-frame
window. This step rejects any outliers and results in smoother
predictions over time. From the filtered facial landmarks on
each frame, we calculate the average mouth bounding box and

the mouth center. The mouth bounding box results from the
four outer mouth landmarks, as shown in Figure 2.

We enlarge the initial mouth bounding box by adding space
around it at a ratio of 3:2 along the x- and y-axes, due to the
initial frame size (704×480 pixels). We experiment with four
physical coverage scales, adding 0, 40, 80, and 120 pixels to the
initial bounding box along the y-axis (half at each side; the cor-
responding increments along the x-axis are 0, 60, 120, and 180
pixels, respectively, due to the 3:2 ratio mentioned). Further,
a fifth case is considered, consisting of the lower half face, as
returned from the face bounding box. This last case simulates
a situation where no facial landmark localization is performed.
The five cases will be denoted as “+0px”, “+40px”, “+80px”,
“+120px”, and “LHF”. Corresponding ROIs are cropped from
the input frame and typically resampled at three resolutions
(with the exception of the +0px case), namely 96×96, 64×64,
and 48×48 pixels (additional resolutions are considered in the
+80px case – see Section 4.2). In the first two cases, we se-
lect the inner 90×90 and 60×60 pixels, respectively, to allow
model training with bigger batch size, thus better utilizing the
available GPU resources and reducing training time. The pro-
cess is illustrated in Figure 3.

The aforementioned scheme does not take camera-subject
distance and face size into account. However, due to the rel-
ative small variation in the corpus (see Section 4.1), there is
little variance in the resulting ROI size compared to the mouth
size. In particular, the ROI physical width to mouth width ra-
tio has mean (standard deviation) of 1.37 (0.023), 1.74 (0.046),
2.12 (0.069), and 2.18 (0.090), over the database, for the +40px,
+80px, +120px, and LHF cases, respectively. Clearly, in case
of more unconstrained visual data, ROI extraction can be easily
modified to ensure constant such ratio in each considered case.

3. CNN-LSTM system architecture
3.1. CNN for visual feature extraction

The CNN architecture used for visual feature extraction is
schematically depicted in Figure 4 and further detailed in Ta-
ble 2. All convolutional layers operate on each video frame
independently. The last layer (“concat”) operates on a window
of 3 consecutive frames with stride one. We do not add any



Layer Output Size Parameters

Spatial convolution 30 × 113× 113 5x5F, 3x3S
ReLU 30 × 113× 113
Spatial max pooling 30 × 56 × 56 3x3F, 2x2S
Spatial dropout 30 × 56 × 56
Spatial batch norm. 30 × 56 × 56
Spatial convolution 60 × 56 × 56 5x5F, 2x2S
ReLU 60 × 56 × 56
Spatial max pooling 60 × 27 × 27 3x3F, 2x2S
Spatial dropout 60 × 27 × 27
Spatial batch norm. 60 × 27 × 27
Spatial convolution 100× 27 × 27 3x3F, 1x1S
ReLU 100× 27 × 27
Spatial max pooling 100× 13 × 13 2x2F, 2x2S
Spatial dropout [34] 100× 13 × 13
Spatial batch norm. 100× 13 × 13
Spatial convolution 100× 13 × 13 3x3F, 1x1S
ReLU 100× 13 × 13
Spatial max pooling 100× 6 × 6 3x3F, 2x2S
Batch norm. [35] 3600
Linear 512
ReLU 512
Dropout [36] 512
Batch norm. 512
Linear 512
ReLU 512
Dropout 512
Batch norm. 512
Linear 36

Table 1: Details of the regression CNN used for face detection
and facial landmark localization (see also Figure 1). The fol-
lowing notation is used: F: convolutional filter size; P: feature
map padding size; S: stride size.

padding to the sequence: as a result, the LSTM input sequence
is 2 time-steps shorter than the original frame sequence. While
the architecture shown in Table 2 is used for all ROI sizes, we
replace the two 1x3x3 max pooling layers with 1x2x2 max pool-
ing layers when min{ROI width , ROI height}≤ 32 pixels. A
smaller input also shrinks the output of the last max pooling
layer to size T × 120 × 1 × 1; as a result, we also change the
size of the input to the linear layer, whenever necessary. No
other changes are applied to the CNN. Similarly to the regres-
sion CNN of Section 2.1, we use grayscale input and we rescale
the pixel intensities [0, 255]→ [0, 1], and apply zero mean and
unity variance normalization. Calculating the mean and vari-
ance of pixels over a video dataset can easily result in numeri-
cal overflow. To avoid this, we calculate a pixel histogram for
each frame, divide it with its sum and accumulate all histograms
into one. Finally, we divide the accumulation histogram with its
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Figure 4: A schematic of the CNN employed for visual feature
extraction in Section 3.1 (see also Table 2).

Layer Output Size Parameters

Vol. convolution T × 20 × 45× 45 1x3x3F, 1x2x2S
PReLU [37] T × 20 × 45× 45
Vol. batch norm. T × 20 × 45× 45
Vol. convolution T × 60 × 45× 45 1x3x3F, 1x1x1S
Vol. batch norm. T × 60 × 45× 45
Vol. max pooling T × 60 × 15× 15 1x2x2F, 1x2x2S
PReLU T × 60 × 15× 15
Vol. convolution T × 90 × 15× 15 1x3x3F, 1x1x1S
Vol. batch norm. T × 90 × 15× 15
Vol. max pooling T × 90 × 5 × 5 1x3x3F, 1x3x3S
PReLU T × 90 × 5 × 5
Vol. convolution T × 120× 5 × 5 1x3x3F, 1x1x1S
Vol. batch norm. T × 120× 5 × 5
Vol. max pooling T × 120× 2 × 2 1x2x2F, 1x2x2S
ReLU T × 120× 2 × 2
Linear T × 100
ReLU T × 100
Concat T × 3× 100 t− 1, t, t+ 1

Table 2: Details of the CNN used for visual feature extraction
(see also Figure 4). Output sizes correspond to a T×1×90×90
input. The same notation is used as in Table 1.

sum, before calculating the mean and variance.

3.2. LSTM for temporal modeling

The basic block of our LSTM network is the resLSTM shown in
Figure 5. It consists of two LSTM networks (one forward and
one backward) of 300 units each. The activations of the two
networks are summed, and the sum is passed through a batch
normalization layer that operates independently on each frame.
Our resLSTM differs slightly from the one introduced in [38].
There, a residual connection is employed, but with a convolu-
tional LSTM and without a batch normalization layer. A convo-
lutional LSTM might be beneficial to lipreading (since it would
preserve the spatial structure of the input signal), but it is very
computationally demanding (compared to a non-convolutional
LSTM); for this reason we didn’t consider it.

Our LSTM network consists of four resLSTM layers, fol-
lowed by a linear (projection) layer that operates independently
on each frame and has dimensions 19×300 (19 being the num-
ber of target classes, as discussed in Section 3.3). The network
is depicted in Figure 6.

The LSTM layers are implemented using the CUDNN li-

300 x LSTM (FW) 300 x LSTM (BW)

Batch normalization

Figure 5: The resLSTM block diagram. The residual connection
is denoted by the red arrow, and the summation of activations by
the blue arrows. The two operations are applied independently
per time-step. The block includes a forward LSTM (left) and a
backward LSTM (right), both with 300 units.
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Figure 6: The CNN-LSTM system depicted for 9 time-steps.

brary [39], which is highly optimized for GPU computation.
One main difference in the CUDNN LSTM implementation
from [40] is the use of two bias terms and the lack of peep-
hole connections. We apply dropout (0.3) to the LSTM layers.
The equations describing this specific implementation for a uni-
directional LSTM layer are:

it = σi(Wxixt +Whiht−1 +Wcict−1 + bWxi

+ bWhi)
(1)

ft = σf (Wxfxt +Whfht−1 +Wcfct−1 + bWxf

+ bWhf )
(2)

ct = ft � ct−1 + it � tanhc(Wxcxt +Whcht−1

+ bWxc + bWhc)
(3)

ot = σo(Wxoxt +Whoht−1 +Wcoct + bWxo

+ bWho)
(4)

ht = ot � tanhh(ct) (5)

where σ is the logistic sigmoid function and it, ft, ct, ot are
respectively the input gate, forget gate, cell activations, and the
output gate. We initialize both bias terms of the forget gate
to unity, as suggested in [21]. The network is trained using
Adagrad [31] for 200 epochs.

3.3. CTC loss and decoding

The network is trained using the CTC loss function [26]. We
use 18 phonemes plus one reserved as the blank label, required
by the CTC function. First, we convert all corpus words (eleven
digits – see Section 4.1) to their corresponding phoneme se-
quence, using the CMU pronouncing dictionary [41]. Then,

we construct a tree using all eleven phoneme sequences, where
each tree branch represents a phoneme, each leaf a vocabulary
word, and a path from the tree root to a leaf a phoneme se-
quence. The tree is depicted in Figure 7.

Assuming a video with T frames, at every time-step the
network outputs a probability distribution over the 19 labels. As
a result, the output for the entire video will be T × 19. From this
output, at every frame we select the most probable phoneme,
and we create a new phoneme sequence of size T × 1. From
this sequence we remove all repeated labels and then all blank
labels, resulting in a new sequence of size N× 1, where N �
T . Starting from the first phonemes of the sequence, we traverse
the tree until we find a leaf node. If during traversal there is
no branch for the current head of the sequence, we discard the
sequence head and repeat for the next phoneme. We convert all
utterances to their corresponding phoneme sequence, and train
the network on this sequence, thus we do not directly minimize
the word error rate (WER) but the phoneme error rate [17].

This approach is by no means robust to single phoneme er-
rors, scalable to larger vocabularies, or computationally opti-
mal. Nonetheless, given the size of the problem considered,
we obtain very good results overall, as discussed in Section
4.2. A better solution would be the well established option
of a sequence-to-sequence model [27] in an encoder-decoder
fashion with the attention mechanism [42]. Such architectures
are able to model language and spelling within a single frame-
work. Also it has the advantage of being able to incorporate
multimodal signals [15]. Other options for the decoder in-
clude hybrid architectures, such as RNN-HMMs [43] or RNN-
WFSTs [44]. For small-vocabulary problems, a simple beam
search with a language model can also improve WER [26].
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Figure 7: The tree structure discussed in Section 3.3, represent-
ing the 11-digit dictionary of our small-vocabulary corpus.

4. Data and experiments
4.1. Database

For our experiments, we use the IBM audio-visual database
of connected digits, recorded under ideal, “studio”-like, visual
conditions [30]. The corpus contains 50 subjects and approx-
imately 6.7k utterances of 7- or 10-digit strings (∼ 10 hours
in duration). The data vocabulary consists of 11 words, i.e.,
“one”–“nine”, “zero”, and “oh”. Video is recorded at 30 Hz
and a 704×480-pixel resolution, as already mentioned.

We adopt a multi-speaker training/testing experimental
paradigm, partitioning the corpus at a 77.4 / 22.6% ratio be-
tween training and test sets. Further, for regression CNN based
face detection and landmark localization, we have an available
pool of 5446 manually annotated frames (see also Figure 2).
This set is split at a 79 / 21% ratio for regression CNN training
and testing.

4.2. Results

To evaluate the performance of the regression CNN, we cal-
culate precision and recall of both face and mouth bounding
boxes, compared to their respective ground truths, according to
the well-known formulas:

Prec(Gi, Pi) =
Area(Gi) ∩Area(Pi)

Area(Pi)

Figure 8: Benchmarking mouth detection performance, as dis-
cussed in Section 4.2.

ROI Physical ROI size expansion LHFresolution +0px +40px +80px +120px
90×90 --- 6.886 5.913 5.505 6.964
60×60 7.375 5.872 5.072 6.008 ---
48×48 9.701 6.256 6.640 6.557 ---
32×32 --- --- 7.589 --- ---
24×24 --- --- 7.935 --- ---
16×16 --- --- 8.702 --- ---

Table 3: Visual-only WER (%) achieved by the presented CNN-
LSTM system for various ROIs differing in physical coverage
and resolution. Additional resolutions are considered for the
best performing coverage setting (+80px).

Rec(Gi, Pi) =
Area(Gi) ∩Area(Pi)

Area(Gi)

where Gi denotes the ground truth and Pi the predicted
bounded box for frame i (see also Figure 8 for the case of the
mouth bounding box). Then, face and mouth detection F-scores
can be calculated as:

F-score(Gi, Pi) =
2 Prec(Gi, Pi) Rec(Gi, Pi)

Prec(Gi, Pi) + Rec(Gi, Pi)

Evaluated over the test part of the manually annotated frames
(1143 frames), the face detection F-score is 0.969 and the mouth
detection one is 0.838 (balanced recall and precision are ob-
served). These results are quite satisfactory, and help drive the
good performance of the speechreading system, reported next.

We now proceed to visual-only recognition results, pre-
sented in WER. As evidenced by Table 3, ROI physical size
and resolution affect WER significantly. The best result of
5.07% WER is obtained by the +80px ROI at a 60×60 reso-
lution. Results degrade when ROI extraction attempts to cover
less (+40px) or additional parts (+120px) of the lower face. In-
terestingly, in the latter case, a better result is achieved by the
higher resolution ROI (90×90 pixels) vs. the 60×60 one. This
is probably due to the fact that the system “focuses” on the more
central parts of the ROI at a resolution similar to the best operat-
ing point of the +80px setting. Few more ROI resolution values
are considered in the +80px setting, demonstrating the benefits
of high-resolution video input. Interestingly, mouth ROIs down
to a 16×16-pixel size still contain significant lipreading infor-
mation, but of course degraded compared to the optimal 60×60-
pixel setting. Notice also that compared to the LHF setting, the
best result corresponds to a 27% relative WER reduction.

It should also be noted that the reported WERs achieved
by our CNN-LSTM system represent dramatic improvements
over traditional GMM-HMM based systems operating on hand-
crafted features. For example, a 29.5% WER was reported
in [30] using a traditional approach. This highlights the major
advances that deep learning methods have brought to the field.

5. Conclusions
We have demonstrated that selecting the right combination
of visual ROI physical coverage and resolution has important
implications to automatic speechreading system performance
within a state-of-the-art deep learning implementation. In fu-
ture work, we will incorporate to our presented system a fully
fledged decoder and experiment on larger datasets, further in-
vestigating parameters of the visual feature extraction network.
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